[Total No. of Questions: 09]

[Total No. of Pages: 02]

Uni. Roll No.

Program/ Course: B.Tech. (Sem. 5th)

Name of Subject: Digital Signal Processing

Subject Code: BTEC – 502

Paper ID: A2104

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Section-A is compulsory

- 2) Attempt any four questions from Section-B and any two questions from Section-C
- 3) Any missing data may be assumed appropriately

Section - A

[Marks: 02 each]

01.

a) Determine the z-transform of the signal

 $x(n) = \alpha^n u(n) + b^n u(-n-1)$

b) What are the advantages of Digital Signal Processing over Analog Signal Processing?

c) Discuss properties of linear convolution

d) Differentiate between fixed-point and floating-point numbers

e) How do you define causal discrete-time systems?

- f) Discuss the properties of the Region of Convergence (ROC) of z-transforms
- g) Explain causal and non-causal LTI systems. Give examples of each
- h) What is frequency warping in Bilinear transformation?

i) Explain the significance of barrel shifter in ADSP

j) What are the advantages of direct form-II realization over direct form-I realization in IIR filters?

Section - B

[Marks: 05 each]

- Q2. Determine if the following systems are time-invariant or time-variant.
 - (i) y(n) = x(n) + x(n-1)
 - (ii) y(n) = x(-n)
- Q3. Explain impulse invariance method of IIR filter design
- Q4. Determine the inverse z-transform of

$$X(z) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}}$$

when

(i) ROC: |z| > 1

(ii) ROC: |z| < 0.5

Evening 0 2 JUN 2017

- Q5. Explain the lattice structures of FIR systems
- Q6. Determine the zero-input response of the system described by the homogeneous secondorder difference equation

$$y(n) - 3y(n-1) - 4y(n-2) = 0$$

consider $y(-1) = 5$ and $y(-2) = 0$

[Marks: 10 each (05 for each sub-part, if any)]

- Q7. Find the DFT of a sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ using DIT algorithm
- Q8. Find the total response of the system described by the difference equation

$$y(n) + 2y(n-1) + y(n-2) = x(n) + x(n-1)$$
 for the input $x(n) = \left(\frac{1}{2}\right)^n u(n)$ with the initial conditions $y(-1) = y(-2) = 1$

Q9. Draw and explain block diagram of a TMS series digital signal processor

